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ABSTRACT
I report experimental methods for measuring real and imaginary parts of the linear electric quadrupole susceptibility tensor of nonlinear
optical crystals that lack inversion centers. The third-ranked tensor is related to the corresponding second-order nonlinear susceptibility
tensor. For opaque materials such as GaAs, the methods involve normal-incidence reflectivity difference detection schemes. For trans-
parent materials, quadrupole susceptibility tensor elements may be measured with similarly construed transmission difference detection
schemes.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0020686

I. INTRODUCTION
An atomic arrangement in a crystalline solid determines the

symmetry group (point group) it belongs to. When the crystal is
subject to external fields, responses to the fields and their gradi-
ents reveal the symmetry group. It is well-known that higher-order
responses to external fields and their gradients can yield more infor-
mation on the structural property of the crystal. When the external
field is an electromagnetic wave, the lowest “high-order” process is
the quadrupole response to the electric field gradient.1,2 As a result, a
linear polarization exists in response to the field gradient through a
third-ranked tensor—electric quadrupole susceptibility tensor. Such
a tensor has the same symmetry property as the second-order non-
linear susceptibility tensor3 so that it has non-zero elements only in
crystals that lack inversion centers, namely, in non-centrosymmetric
crystals (a.k.a. nonlinear crystals). Zhu et al. recently demon-
strated the existence of such a linear quadrupole response
in GaAs.2

There are two useful applications of measuring linear
quadrupole responses: (1) studying structural properties and phase
transitions in some crystals with linear optics;4–7 (2) characterizing
the second-order nonlinearity of a nonlinear optical crystal.8 Yet,
experimental measurements of linear quadrupole responses have
challenges. The first is that a detection scheme often only measures
part of a susceptibility element, such as the real or the imaginary

part, or a particular combination of the two.2 The second is that
most nonlinear crystals have much smaller second-order nonlin-
earity than GaAs does.8 In addition, third-ranked tensor elements
in some of these materials are such that only at oblique incidence,
they reveal symmetry properties of the crystals. Both lead to a much
weaker effect on optical reflection. In this work, I show that a com-
bination of reflectivity difference detection schemes can be used to
separately measure the real part, the imaginary part, and the abso-
lute amplitude of a quadrupole susceptibility tensor element of a
nonlinear crystal such as GaAs. Similar schemes in the transmission
geometry may be used to measure quadrupole susceptibility tensor
elements in transparent nonlinear crystals.

II. SYMMETRY PROPERTIES OF LINEAR ELECTRIC
QUADRUPOLE RESPONSE IN NONLINEAR CRYSTALS

Unlike the electric dipole response in a material in which an
induced electric polarization is a linear function of the electric field
through a second-ranked tensor, a polarization arising from the
quadrupole response is a linear function of the electric field gradient
through a third-ranked tensor,

P⃗(1)Q = ϵ0
↔

χ (1)Q : ∇E⃗ (1)
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or P(1)Q,α = ϵ0χ(2)EQ,αβγ : ∇βEγ. It is useful to note that the second-order
nonlinear dipole response is a quadratic function of the electric field
through a third-ranked susceptibility tensor as well,

P⃗(2)D = ϵ0
↔

χ (2)D : E⃗E⃗. (2)

Both
↔

χ (1)Q and
↔

χ (2)D vanish in materials with inversion centers. For
nonlinear optical crystals, susceptibility elements for both tensors
have the same symmetry properties and are known in the literature.8

It is easy to show that roughly
↔

χ (2)D ≅ (e/̵hω)
↔

χ (1)Q .3 By measuring
one of the two, we may estimate the other as an approximation.

Consider GaAs for an example. It belongs to the Td or 43m
group. In the principal coordinate frame, only 6 out of 27 elements
in
↔

χ (1)Q are non-zero, and they are equal in magnitude: χ(1)Q,xyz = χ(1)Q,xzy

= χ(1)Q,yzx = χ(1)Q,yxz = χ(1)Q,zxy = χ(1)Q,zyx ≡ d14.3 In the visible range, GaAs
is opaque, and thus, d14 has both a real part and an imaginary part.
Inside the crystal, the gradient of the electric field mainly comes from
the spatial variation of the phase, and Eq. (1) becomes1,2

P⃗(1)Q = ϵ0(i
↔

χ (1)Q : ⃗k) : E⃗ = ϵ0Δ↔ϵQ : E⃗, (3)

Δ↔ϵQ = i
↔

χ EQ : ⃗k. (4)

Δ↔ϵQ is the effective change in the dielectric tensor due to the elec-
tric quadrupole response. ⃗k is the wave vector of the electromagnetic
wave in the crystal. When expressed in the principal coordinate
frame, I have

Δ↔ϵQ = id14

⎛

⎜

⎝

0 kz ky
kz 0 kx
ky kx 0

⎞

⎟

⎠

. (5)

Δ↔ϵ Q has a different form when the laboratory coordinate frame does
not overlap with the principal frame. To a degree, the transforma-
tion of Δ↔ϵQ reveals the crystalline symmetry. Let the two coordi-
nate frames overlap initially. When the principal frame rotates about
the common z axis counter-clockwise by angle ϕ, in the laboratory
frame, I now have

Δ↔ϵ Q(ϕ) = id14

⎛

⎜

⎝

kz sin 2 ϕ kz cos 2 ϕ kx sin 2 ϕ
kz cos 2 ϕ −kz sin 2 ϕ kx cos 2 ϕ
kx sin 2 ϕ kx cos 2 ϕ 0

⎞

⎟

⎠

. (6)

By experimentally measuring these tensor elements that exhibit dis-
tinct azimuth dependence, one can study structural properties and
even phase transition in nonlinear crystals using linear optics.

III. REFLECTIVITY DIFFERENCE MEASUREMENTS
OF A LINEAR QUADRUPOLE SUSCEPTIBILITY TENSOR

Δ↔ϵ Q(ϕ) from a linear quadrupole response amounts to a small
correction to the dielectric tensor. It produces small corrections to
optical reflection and transmission and distinguishes itself through
a characteristic azimuth dependence. Since Δ↔ϵ Q(ϕ) cannot be mod-
ulated externally, one needs to use detection schemes that sup-
press the zeroth order reflection and transmission while keeping the

quadrupole effect more or less intact. For opaque crystals such as
GaAs, one can only measure the correction to optical reflection. I
next describe two reflectivity difference detection schemes for full
Δ↔ϵ Q(ϕ) characterization.

I start with a GaAs(001) surface with the z′ axis of the prin-
cipal frame pointing into the surface. The x–y–z axes of the lab-
oratory coordinate frame initially overlap with x′–y′–z′ axes of
the principal coordinate frame. The principal frame is allowed to
rotate about its z′ axis (same as the laboratory z axis) counter-
clockwise subsequently. The change in the linear dielectric ten-
sor, Δ↔ϵ Q(ϕ), produces small corrections to the electric fields
in reflection and modifies the reflection matrix R that relates
s-polarized and p-polarized components of the reflected elec-
tric field to those of an incidence electric field. Let an opti-

cal beam incident from the ambient with
↔

ϵ1 = ϵ1
↔

I at angle θinc

on the (001) surface of GaAs(001) with
↔

ϵ 2 = ϵ2
↔

I + Δ↔ϵ Q(ϕ).
By choosing the x–z plane as the incidence plane, the electric
field of the incident beam is given by E⃗(+)1 exp(ik(+)1x x + ik(+)1z z).
The fields of the reflected and transmitted beams are writ-
ten as E⃗(−)1 exp(ik(+)1x x − ik(+)1z z) and E⃗(+)2 exp(ik(+)2x x + ik(+)2z z)

= E⃗(+)2 exp(ik(+)1x x + ik(+)2z z), with k(+)1x = (2π/λ)
√

ϵ1sinθinc, k(+)1z

= (2π/λ)
√

ϵ1cosθinc, and k(+)2z = (2π/λ)
√

ϵ2 − ϵ1sin2θinc. Figure 1
shows the laboratory frame and the convention of s-polarization
and p-polarization for E⃗(+)1 , E⃗(−)1 , and E⃗(+)2 . The reflected electric
field is related to the incident electric field through a reflection
matrix,

⎛

⎝

E(−)1p

E(−)1s

⎞

⎠

= R
⎛

⎝

E(+)1p

E(+)1s

⎞

⎠

= [(
r(0)pp 0

0 r(0)ss
) + (

Δrpp Δrps
Δrsp Δrss

)]

⎛

⎝

E(+)1p

E(+)1s

⎞

⎠

. (7)

FIG. 1. The incident, reflected, and transmitted electric fields in the laboratory
coordinate frame and choices of unit vectors for s-polarization and p-polarization
are indicated.
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r(0)pp and r(0)ss are zeroth order reflection coefficients (reflectivities).
Δrpp, Δrps, Δrps, and Δrss are corrections due to Δ↔ϵ Q(ϕ). From
Eq. (6), it is clear that some of the azimuth-dependent tensor ele-
ments in Δ↔ϵ Q(ϕ) remain when θinc = 0, kx = k(+)2x = k(+)1x = 0, and
kz = k(+)2z = (2π/λ)

√
ϵ2. As a result, at normal incidence, the correc-

tion to the reflection matrix becomes9

(
Δrpp Δrps
Δrsp Δrss

) = (
−a sin 2 ϕ −a cos 2 ϕ
−a cos 2 ϕ +a sin 2 ϕ), (8)

with a = id14(2π/λ)
√

ϵ1

(
√

ϵ1+
√

ϵ2)
2 . At normal incidence, r(0)pp = r(0)ss

≡ r0. I can write the modified reflection matrix as follows:

R(θinc = 0) = (r0 − a sin 2 ϕ −a cos 2 ϕ
−a cos 2 ϕ r0 + a sin 2 ϕ). (9)

This means that for crystals such as GaAs, one can use normal-
incidence reflectivity difference detection schemes on the (001)
surface to measure linear quadrupole responses.

IV. EXPERIMENTAL PROCEDURES AND DATA
PROCESSING
A. Normal-incidence detection scheme
for measuring Re{a/r0}

Figure 2 displays a detection scheme employed by Zhu et al.
in the original study of the linear quadrupole response in GaAs.2
In this scheme, a p-polarized He–Ne laser beam (0.5 mW and
λ = 0.633 μm) passes through a photo-elastic modulator (PEM-90,
Hinds Instrument, Hillsboro, OR) with its fast axis at +45○

from the p-polarization. PEM-90 adds a time-varying phase Φ(t)
= Φ0 cos(2π f t) between components along the slow axis and the
fast axis of the modulator at f = 50 kHz. The beam, then, passes
through a phase shifter that adds an adjustable phase difference
between the p-polarized and s-polarized components of the beam.
It is a quarter-waveplate made of quartz with its fast axis along

FIG. 2. Optical layout for a normal-incidence reflectivity difference detection
scheme. A laser beam passes through a linear polarizer (PL), a photo-elastic
modulator (PEM), and a phase shifter (PS) or phase compensator. After reflec-
tion of a bending mirror, it is incident on the sample near normal incidence. The
reflected beam is detected with a photodetector (PD).

the horizontal direction. By rotating the waveplate about the ver-
tical axis with a rotary stage, a variable phase difference is added
between the s-polarized and p-polarized components of the passing
beam. After a bending mirror, the beam is incident on the sample
near normal incidence. The phase-sifter is used to compensate for
the phase difference introduced by the bending mirror. The inten-
sity of the reflected beam I(t) is detected with a Si photodiode
(S2387-130R, Hamamatsu Corp., Bridgewater, NJ), followed by a
home-built amplifier with a gain of 5 × 104V/A. The output from
the amplifier is analyzed with two separate lock-in amplifiers (SR830,
Stanford Research Systems, Sunnyvale, CA) to yield the first and sec-
ond harmonics of the modulation frequency, I( f ) and I(2 f ) in I(t).
From Eq. (A8) in the Appendix, by setting Φp −Φp + Δps = 90○, they
are given by the following expressions:

I( f ) = −4Iinc∣r0∣
2J1(Φ0)Re{Δrps/r0}

= 4Iinc∣r0∣
2J1(Φ0)Re{a/r0}cos2ϕ, (10)

I(2 f ) = −4Iinc∣r0∣
2J2(Φ0)Re{Δrpp/r0}

= 4Iinc∣r0∣
2J2(Φ0)Re{a/r0}sin2ϕ. (11)

In the earlier study,2 Zhu et al. showed that Eqs. (10) and
(11) indeed describe the observed azimuth dependence and con-
firmed the expected magnitude of the electric quadrupole effect. The
advantage of this scheme is that it detects both off-diagonal (Δrps)

and diagonal (Δrpp) elements in the reflection matrix. The disad-
vantage is that it only measures the real part of a/r0. This limita-
tion is resolved in a different normal-incidence detection scheme as
described next.

B. Normal-incidence detection scheme
for measuring Im{a/r0} and ∣a/r0∣

Figure 3 shows a modified scheme for detecting the normal-
incidence reflection difference. In this case, the initial He–Ne laser

FIG. 3. Optical layout for another normal-incidence reflectivity difference detec-
tion scheme. In this case, the linear polarizer (PL) and the photoelastic modulator
(PEM) are oriented differently from their configurations in Fig. 1. The reflected
beam passes through an analyzing polarizer (A) before it is detected with the
photodetector (PD).
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beam (0.5 mW and λ = 0.633μm) is linearly polarized along the
direction +45○ from the p-polarization (the horizontal direction).
It passes through a photoelastic modulator (PEM-90) with the fast
axis now parallel to the p-polarization. The modulator adds a time-
varying phase Φ(t) = Φ0 cos(2π f t) to the s-polarized component of
the passing beam at f = 50 kHz. In this work, Φ0 = π/2. The beam,
then, passes through a phase shifter (PS) that adds an adjustable
phase ΔPS between the p-polarized and s-polarized components, the
same as the one in Fig. 2. After a bending mirror, the beam illumi-
nates the sample near normal incidence. The phase shifter is used to
compensate for phase differences introduced by the bending mirror
and by the reflection matrix elements, namely, parameters a and r0
in Eq. (9). The reflected beam passes through an analyzing polar-
izer with its transmission axis (TA) at an angle θA variable from the
p-polarized component of the reflected beam. The analyzer serves
to mix the s-polarized and p-polarized components of the reflected
beam and enables detection of Im{a/r0} and ∣a/r0∣. The beam inten-
sity I(t) after the analyzer is detected with a combination of a Si
photodiode (S2387-130R, Hamamatsu Corp., Bridgewater, NJ) and
the home-built amplifier. The output of the amplifier is analyzed
with two lock-in amplifiers (SR830, Stanford Research Systems, Sun-
nyvale, CA) to yield the first and second harmonics of the modu-
lation frequency, i.e., I( f ) and I(2 f ). According to Eq. (A14) in
the Appendix, I(t) at the Si photodiode detector is expressed as
follows:

I(t) =
Iinc∣r0∣

2

2
+ Iinc∣r0∣

2 sin θA cos θA

× [cos Φ(t) cos(α − 2γ) + sin Φ(t) sin(α − 2γ)]

− Iinc∣r0∣
2
∣

a
r0
∣ cos 2 ϕ[cos2θA cos(α − β −Φ(t))

+ sin2θA cos(α + β −Φ(t))], (12)

with α ≡ Φp −Φs − ΔPS, where Φp and Φs are phase changes for p-
polarized and s-polarized components of the beam due to reflec-
tion at the bending mirror. β = arg{a/r0}, and γ ≡ −Im{Δrpp/r0}

= Im{a/r0}sin2ϕ.
By setting the TA of the analyzer to θA = 0○, I arrive at

I( f ) = −2∗ Iinc∣r0∣
2
∗ J1(Φ0)∗ ∣a/r0∣∗ sin(α − β)∗ cos 2 ϕ, (13)

I(2 f ) = +2∗ Iinc∣r0∣
2
∗ J2(Φ0)∗ ∣a/r0∣∗ cos(α − β)∗ cos 2 ϕ. (14)

By adjusting the phase shifter, namely, ΔPS, to make either α −
β = 0 or α − β = 90○, one of the harmonics vanishes and the other
yields ∣a/r0∣. For example, with α − β = 90○ so that I(2 f ) = 0,
I have

I( f ) = −2∗ Iinc∣r0∣
2
∗ J1(Φ0)∗ ∣a/r0∣∗ cos 2 ϕ. (15)

By chopping the laser beam with a mechanical chopper at 1 kHz
without changing any part in Fig. 3, I measure Iinc∣r0∣

2. This allows
the extraction of ∣a/r0∣ completely.

By setting TA of the analyzer to θA = −45○, and further setting
α = 0○ to minimize I( f ), I have

I( f ) = 2∗Iinc∣r0∣
2
∗J1(Φ0)∗Im{a/r0}∗ sin 2 ϕ, (16)

I(2 f ) = Iinc∣r0∣
2
∗J2(Φ0)∗[1 + 2∗Re{a/r0}∗ cos 2 ϕ]. (17)

Im{a/r0} is measured from I( f ). Im{a/r0} can also be measured
with I(2 f ) by setting α = −90○ to minimize I(2 f ) initially. In this
case,

I( f ) = Iinc∣r0∣
2
∗J1(Φ0)∗[1 + 2∗Re{a/r0}∗ cos 2 ϕ], (18)

I(2 f ) = −2∗Iinc∣r0∣
2
∗J2(Φ0)∗Im{a/r0}∗ sin 2 ϕ. (19)

By separately measuring Iinc∣r0∣
2, Im{a/r0} is obtained.

C. Measuring the real part of a/r0 (Re{a/r0})
with minor modification to Fig. 3

If the analyzer in Fig. 3 is removed, the s-polarized and p-
polarized components of the reflected beam are no longer mixed
before detection. As a result, the first and second harmonics become
[see Eq. (A17) in the Appendix for details]

I( f ) = −4∗Iinc∣r0∣
2
∗J1(Φ0)∗Re{a/r0}∗ sin α∗ cos 2 ϕ, (20)

I(2 f ) = +4∗Iinc∣r0∣
2
∗J2(Φ0)∗Re{a/r0}∗ cos α∗ cos 2 ϕ. (21)

Again with the separate measurement of Iinc∣r0∣
2 by chopping the

laser beam with a mechanical chopper at 1 kHz, Re{a/r0} is com-
pletely extracted.

V. RESULTS AND DISCUSSION
A. Measuring ∣a/r0∣

In Fig. 4, I show −I( f )/Iinc∣r0∣
2 as a function of ϕ mea-

sured from a GaAs(001) wafer. It is measured with θA = 0○ and
α − β = 90○ in Fig. 3. The negative sign is introduced using the

FIG. 4. The first harmonic in the reflected intensity divided by the total reflected
intensity, −I( f)/Iinc∣r0∣2, vs azimuth angle ϕ about the z axis (pointing into the
sample).
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FIG. 5. (a) The first harmonic in the reflected intensity divided by the total reflected intensity, −I( f)/Iinc∣r0∣2, vs azimuth angle ϕ. (b) The second harmonic divided by the
total reflected intensity, I(2 f)/Iinc∣r0∣2, vs azimuth angle ϕ. Both measurements are done with the scheme shown in Fig. 3.

phase setting of the lock-in amplifier. The signal varies as cos 2ϕ,
as expected from Eq. (15) or the off-diagonal element of the reflec-
tion matrix, Δrps = −a cos 2ϕ. With J1(π/2) = 0.56, I find ∣a/r0∣ = 1.4
× 10−3. Since a/r0 = (−i)d14(2π/λ)/(ϵ2 − 1) ≅ (−i)d14(2π/λ)/14
and λ = 0.633μm, I arrive at ∣d14∣ = 2.0 × 10−9 m. This makes ∣d(2)14 ∣

≅ 1.0 × 10−9 m/V at λ = 0.633μm. It is 2.5 times larger than ∣d(2)14 ∣

≅ 0.37 × 10−9 m/V at λ = 10μm for GaAs.3,8

B. Measuring Im{a/r0}
In Fig. 5(a), I show −I( f )/Iinc∣r0∣

2 vs azimuth angle ϕ from
the GaAs(001) wafer. It is measured with θA = −45○ and α = 0○ in
Fig. 3. The signal varies as sin 2ϕ, as expected from Eq. (16) or the
correction to the diagonal element of the reflection matrix, Δrpp
= −a sin 2ϕ. Again with J1(π/2) = 0.56, I find Im{a/r0} = −0.98
× 10−3.

In Figure 5(b), I show I(2 f )/Iinc∣r0∣
2 vs azimuth angle ϕ from

the GaAs(001) wafer measured with θA = −45○ and α = 90○ in Fig. 3.
It varies as sin 2ϕ as expected from Eq. (19). With J2(π/2) = 0.25, I
arrive at Im{a/rn} = −0.91 × 10−3.

C. Measuring Re{a/r0}
In Figs. 6(a) and 6(b), I display −I( f )/2Iinc∣r0∣

2 and
I(2 f )/2Iinc∣r0∣

2 as functions of azimuth ϕ using the scheme in
Fig. 3 without the analyzer. Both vary as cos 2ϕ, in agreement with
Eqs. (20) and (21). I further deduce ∣Re{a/r0}∣ = 0.88 × 10−3 using
Eqs. (20) and (21). From values of Im{a/r0} and ∣Re{a/r0}∣, I find
√

Re{a/r0}
2
+ Im{a/r0}

2
= 1.33 × 10−3, in good agreement with the

separately measured ∣a/r0∣ = 1.4 × 10−3. It shows that the normal-
incidence reflectivity difference illustrated in Fig. 3 is a most effective
scheme as it independently measures Im{a/r0}, Re{a/r0}, and ∣a/r0∣.

FIG. 6. (a) The first harmonic signal in the reflected intensity divided by the total reflected intensity, −I( f)/Iinc∣r0∣2, vs azimuth angle ϕ. (b) The second harmonic signal in
the reflected intensity divided by the total reflected intensity, I(2 f)/Iinc∣r0∣2, vs azimuth angle ϕ. Both measurements are done using the setup shown in Fig. 3 without the
analyzer.
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Since r0 is known, the quadrupole susceptibility tensor element as a
complex number is easily determined.

As I illustrated here, normal-incidence reflectivity difference
detection (NI-RD) involving polarization modulation can be con-
figured to suppress or even eliminate the effect of the leading order
dielectric response while revealing much weaker effects from the
electric quadrupole process. Figure 2 shows one realization of NI-RD
in which the first and second harmonics of modulation frequency in
the reflected beam intensity are directly proportional to corrections
to the diagonal and off-diagonal reflection matrix caused by the lin-
ear quadrupole response. Its only deficiency is that it only detects real
parts of the corrections. Figure 3 shows a more versatile realization
of NI-RD in which the first and second harmonics of modulation
frequency can be made directly proportional to absolute values or
imaginary parts or real parts of the corrections. As a result, it can be
used to fully characterize the quadrupole susceptibility tensor ele-
ment, as long as azimuth-dependent corrections are non-vanishing
at normal incidence. This applies to crystals with cubic symmetry
and uniaxial crystals.

The convenience of optical reflection measurement comes with
a limitation. That is, the signal is mostly from a region near the sur-
face having an effective thickness in the order of optical wavelength
or less.9,10 This makes the effects on optical reflection from processes
such as linear quadrupole response and magneto-optic response
small and difficult to observe in many cases. Most nonlinear optical
crystals have much smaller second-order nonlinear susceptibilities
↔

χ (2)D when compared with that of GaAs. Electric quadrupole sus-
ceptibility tensors

↔

χ (1)Q in these materials are expected to be small
accordingly. What limits the detection sensitivity is the inhomo-
geneity of a real crystalline sample and the effect from the surface
layer. Over the illuminated area, linear electric dipole responses in
the surface layer and even inside the bulk have residual anisotropy as
a result of crystal growth and preparation. They yield an anisotropic
background that superimposes on the EQ response. Experimentally,
these residual anisotropic effects from the electric dipole response
can be eliminated by performing microscopic measurements on a
single domain of the sample.7 Furthermore, by placing the sam-
ple should be inside an ultrahigh vacuum, the anisotropy origi-
nated from the surface layer can be removed with suitable surface
treatments.

Alternatively, one may use transmission difference detection
schemes similar to Fig. 3. Transmission measurements increase the
effect of

↔

ϵ by the ratio of the sample thickness to the optical wave-
length. For example, the Faraday rotation (in transmission) is known
to be much larger than Kerr rotation (in reflection) from a mag-
netic material.11–13 This is because the Faraday effect is accumulative
over a much larger distance. For the same reason, optical second-
harmonic reflection from a nonlinear crystal is much weaker than
optical second-harmonic transmission in the same crystal under the
phase-matched condition.3 For transparent materials, a weak dielec-
tric response such as magneto-optic effect and electric quadrupole
effect can produce a large effect on transmission due to enhanced
“interaction” lengths.
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APPENDIX: JONES MATRIX CALCULATION
FOR NORMAL-INCIDENCE REFLECTIVITY
DIFFERENCE (NI-RD) DETECTION

For completeness, I here describe key elements of Jones matrix
calculation that lead to Eqs. (10)–(12) and Eqs. (20) and (21). It suf-
fices to list the initial Jones vector and Jones matrices of the optical
elements right before the photo-detector (PD). The intensity mea-
sured by using the photo-detector is the initial beam intensity Iinc
before the photo-elastic modulator (PEM) multiplied by the sum of
squares of the Jones vector components.

For NI-RD shown in Fig. 2, the initial beam is p-polarized and
has a Jones vector,

Ẽinc = (
1
0). (A1)

The Jones matrices for the PEM, phase shifter, and the bending
mirror are as follows:

MPEM(FA@45○) =
1
2
(

1 + eiϕ(t) 1 − eiϕ(t)

1 − eiϕ(t) 1 + eiϕ(t)), (A2)

MPS(ΔPS) = (
1 0
0 eiΔPS), (A3)

Mmirror = (
eiΦp 0

0 eiΦs
). (A4)

The Jones matrix for the sample is the reflection matrix given by
Eq. (10),

Msample = R(θinc = 0) = (r0 − a sin 2 ϕ −a cos 2 ϕ
−a cos 2 ϕ r0 + a sin 2 ϕ). (A5)

The Jones vector before the photo-detector is given by

Ẽ f inal = (
p
q) =MsampleMmirrorMPS(ΔPS)MPEM(FA@45○)Ẽinc. (A6)

The reflected beam intensity measured by using the photo-receiver
is given by

I(t) = Iinc(p2
+ q2
). (A7)

By only keeping terms in (p2
+ q2
) up to those that vary linearly with

the small parameter a in the reflection matrix (A5), we arrive at the
expression for the reflected beam intensity,

I(t) = Iinc∣r0∣
2
+ 2∗Iinc∣r0∣

2
∗Re{a/r0}∗ cos 2ϕ∗ sin Φ(t)

× sin(Φp −Φp + Δps) − 2∗Iinc∣r0∣
2
∗Re{a/r0}

× ∗ sin 2ϕ∗ cos Φ(t). (A8)

Equations (10) and (11) are obtained from (A8) by setting Φp −Φp
+ Δps = 90○, expanding cos Φ(t) and sin Φ(t), and keeping the first
and second harmonics.
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For NI-RD shown in Fig. 3, the initial beam is linearly polarized
with equal s-polarized and p-polarized components and has a Jones
vector,

Ẽinc =
1
√

2
(

1
1). (A9)

The Jones matrices for the PEM with its fast axis along the
p-polarization and the analyzer after the sample are as follows:

MPEM(FA@0○) = (
1 0
0 eiϕ(t)), (A10)

MPL(TA@θA) = (
cos2θA cos θA sin θA

cos θA sin θA sin2θA
). (A11)

The Jones vector right before the photo-receiver is given by

Ẽ′ f inal =

⎛

⎜
⎜
⎜

⎝

p′

q′

⎞

⎟
⎟
⎟

⎠

=MPL(TA@θA)MsampleMmirrorMPS(ΔPS)MPEM

× (FA@0○)Ẽinc. (A12)

The reflected beam intensity measured by using the photo-receiver
is given by

I(t) = Iinc(p′2 + q′2). (A13)

Again, by only keeping terms in (p′2 + q′2) up to those that vary
linearly with the small parameter a, we arrive at Eq. (12) in the main
text,

I(t) =
Iinc∣r0∣

2

2
+ Iinc∣r0∣

2 sin θA cos θA[cos Φ(t) cos(α − 2γ)

+ sin Φ(t) sin(α − 2γ)] − Iinc∣r0∣
2
∣

a
r0
∣ cos 2 ϕ

× [cos2θA cos(α − β −Φ(t)) + sin2θA cos(α + β −Φ(t))].
(A14)

Here, α = Φp −Φs − ΔPS, and β = arg{a/r0} is the phase of a/r0.
γ = −Im{Δrpp/r0} = Im{a/r0} sin 2 ϕ.

Finally, by removing the analyzer in Fig. 3, the Jones vector
immediately before the photo-receiver is given by

Ẽ′′ f inal =

⎛

⎜
⎜
⎜

⎝

p′′

q′

⎞

⎟
⎟
⎟

⎠

=MsampleMmirrorMPS(ΔPS)MPEM(FA@0○)Ẽinc.

(A15)

The reflected beam intensity measured by using the photo-receiver
is given by

I(t) = Iinc(p′′2 + q′′2). (A16)

Keeping terms in (p′′2 + q′′2) up to those that vary linearly with
the small parameter a, we arrive at the following expression for the
reflected intensity:

I(t) = Iinc∣r0∣
2
− 2∗Iinc∣r0∣

2
∗Re{a/r0}∗ cos 2ϕ∗ cos(α −Φ(t)).

(A17)
Again, α = Φp −Φs − ΔPS. By keeping only the first and second
harmonics in Eq. (A17), we obtain Eqs. (20) and (21).
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